Detecting marine litter on sandy beaches by using UAS-based orthophotos and machine learning methods

Gil Gonçalves^{1,2}, Umberto Andriolo², Diogo Duarte^{1,2}, Luis Pinto³ Filipa Bessa^{1,4}, Paula Sobral⁵ and Luisa Gonçalves²

(1) University of Coimbra, PT, gil@mat.uc.pt
 (2) INESCC, Institute for Systems Engineering and Computers at Coimbra, PT
 (3) CMUC, Center for Mathematics of the University of Coimbra, PT
 (4) MARE, Marine and Environmental Sciences Centre, University of Coimbra , PT

Gil Gonçalves – MARINETECH

Motivation (1)

- Marine Litter (MLit) is defined as any persistent, manufactured or processed solid material discarded, disposed of, abandoned or lost in the marine and coastal environment (UNEP, 2005)
- The amount of MLit in marine and coastal environments is dramatically increasing
- MLit become a global issue of major concern due to its significant potential impact on coastal systems and on human health
- However, systematic observations of their sources, composition and distributions (detection and mapping) are still very sparse and inaccurate

Motivation (2)

- It is crucial to implement a routine environmental monitoring strategy for spatial and temporal detection and mapping of MLit on beach-dune
- Currently, the common approaches for MLit monitoring along coastlines rely mainly on in-situ visual census methods
- Research objectives:
 - Develop and validate a framework for detecting and mapping MLit using object oriented machine learning methods in orthomosaics
 - Evaluate the performance of 3 commonly used machine learning methods: Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbour (KNN)

Study area: Cabedelo beach

- The case study is Cabedelo Beach (40°08'N - 8°51'W), a sandy coastal stretch located on the western Portuguese coast facing the North Atlantic Ocean
- The beach shore is located southward Mondego River estuary
- It was selected since it is exposed to high potential for beaching of anthropogenic debris coming from the estuary

General workflow

UAS flight planning: DroneDeploy

3 Flights are planed with front 80% and side overlap 65%, mapping speed 3m/s and flight heights 20 m, 40 m and 60 m

Gil Gonçalves – MARINETECH

SfM-MVS processing

- For this work only the 20 m
 flight was used
- 6 GCPs are used in the image block adjustment
- Autocalibration approach was used for computing the internal camera orientation parameters (f, cx,cy, k1.k2,p1,p2)
- Agisoft MetaShape software was used to generate the DSM and Orthophoto

Orthophoto DSM

Working areas and nomenclature

Class ID	Class Name	Description	Classifie	cation area	
Litter	Litter	Persistent, manufactured or processed solid material		.rea #2	-
LitterVeg	Vegetated litter	Non-anthropogenic (vegetated) debris	Va	Idation	
Sand	Dry Sand	All kind of dry sand located in the back shore			
Shadow	Cast shadows	Shadows of all kind of elevated objects and footprints	A	rea #3	「「「「「」」

Examples:

Gil Gonçalves – MARINETECH

Colour spaces in MLit detection

Rationale:

- MLit is generally characterized by their strong manufactured colours
- For detection objects based on colour the RGB is **not enough** because of its non uniform characteristics and mixing of colour and intensity information
- Additional colour spaces
- **CIELAB** = CIE L*,a*,b*
- **HSV** = Huge, Saturation, Value
- **YCbCr** = Y, Cb, Cr

Color spaces

Object Based Image Analysis (OBIA)

- The OBIA classification in
 Ecognition Developer can be carried out in four steps
 - Manually delineate the training areas (a)
 - Segment the image and integrate the manual training areas (b)
 - Generating the objects
 statistics file using the training data sample (c-d)
 - Using the statistics file to train the classifier
 - Applying the classifier to a new image or area (e)

06/11/2019

Results: classifications

06/11/2019

Gil Gonçalves – MARINETECH

4. Results and discussion

Results: ML detection accuracy

Val Area #	Classif	ТР	FN	FP	Р	R	F
2	RF	81	37	44	0.65	0.69	0.67
	SVM	69	49	20	0.78	0.58	0.67
	KNN	71	47	35	0.67	0.60	0.63
	RF	91	33	62	0.59	0.73	0.66
3	SVM	75	49	25	0.75	0.60	0.67
	KNN	83	41	37	0.69	0.67	0.68

True positive (TP):

Results: ML detection accuracy

Gil Gonçalves – MARINETECH

4. Results and discussion

Conclusions

- The proposed approach is a cost-effective solution for mapping Marine Litter (MLit)
- The 3 ML classifiers (RF, SVM and KNN) have about the same MLit detection performance.
 - KNN is more simple to tune (only one parameter)
 - **RF is more complex** to tune (8 parameters)
- A Litter map (including density map) can also be used to optimize the clean-up operations.
- The use of **multispectral images** (and multicamera systems) for detecting persistent marine on the dune zone is **currently underway**.

Thanks

Any question?