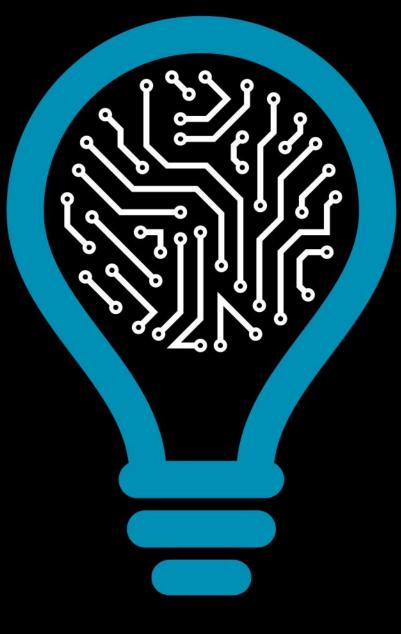
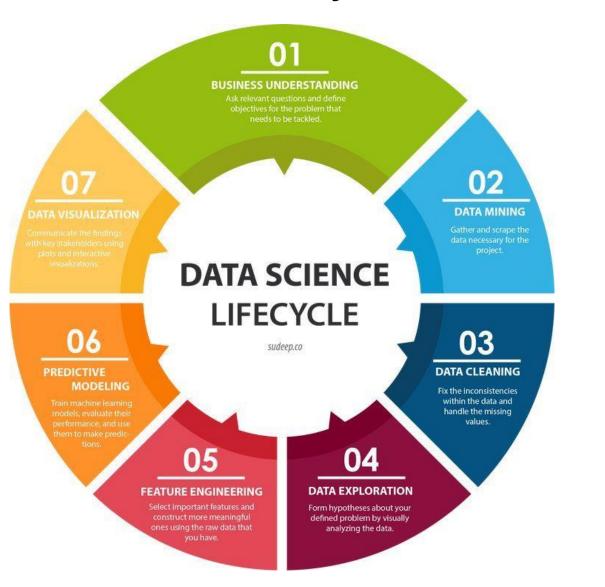
Software Ecosystem for the Acquisition, Analysis, Processing and Publishing of Marine Observation Data

Artur Rocha (artur.rocha@inesctec.pt)


INESC TEC

MARINETECH 2019

November 5th, 2019



INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

- Life Cycle Overview and Projects
- MELOA, the WAVY & the WOS
- Data Acquisition
- Meta-model for Observation Data
- Real-time Data Visualization
- Curation Tools & Exploratory Analysis
- Publishing Data: End of Upstream Cycle
- MarRISK & Coastal Resilience
- Observation Data: Managing& Searching
- Data Curation: Quality & Availability
- Processing: Extraction of Indicators
- Communicating Risks

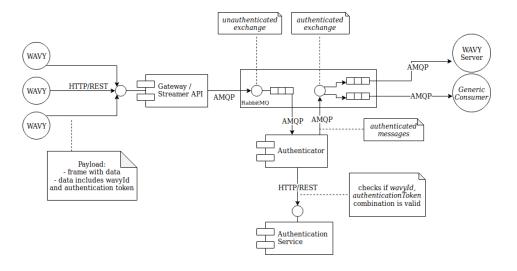
Data Science Life Cycle Overview

© 2018 Sudeep Agarwal

WAVY Drifters & WAVY Operation Software

Multi-purpose/Multi-sensor Extra Light Oceanography Apparatus

- WAVY is a surface drifter, developed under the scope of MELOA Project, that acquires marine in-situ measurements.
- WAVY Operation Software is a tool, developed by INESC TEC, supporting users in the process of data acquisition, curation (annotation, cleansing, ...), exploration and sharing.



Data Acquisition

- The Real Time Data Streamer is a message broker that allows the WOS to subscribe and consume real-time messages sent by the WAVY drifters with virtually no data loss.
- Even in an unlikely event of server unavailability or maintenance, the Real Time Data Streamer will store the measurements until they are successfully transmitted to the WOS.

Meta-model for Observation Data

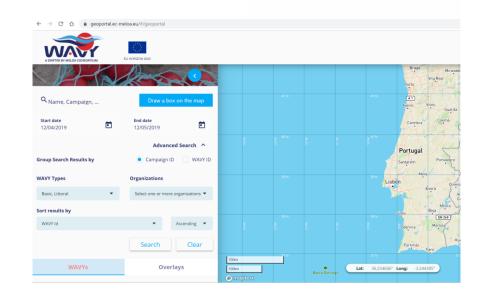
- The WOS leverages on the conceptual model of the Observation & Measurements (O&M) standard.
- The WOS data model was inspired on the OGC SensorThings API data model, with some additions to fulfill the requirements of the MELOA Project.

Real-time Data Visualization

- WOS offers a tool that allow users to see the acquired measurements in real-time in a georeferenced map.
- The real-time operation can also be visualized as a table
- Allows the users to take time referenced notes, in a collaborative way.

=	Live Map	÷	с ө
5	WAVYS		×
<u>ی</u>	WL54 gentme 11 13:17 [utilistic N13.7538.1 [lengther: P1.75833.5 [usesties: 4 [Nety 2.4.1]ength: 4.56 m] (powr 0.05 m3 [ustrey: 4031 mV	29-11-2019 11 12:17	1
±	WL51 spolme: 11.13.54 witude: N41 223427 torgitude: E1.736429 satellites: 7 (hopo: 1.39 height: 6.44 m speed: 0.05 ms satellity; 3669 mV	29-11-2019 11:13:54	1
-	WLG5 gentee: 11-14.8 latitude: N41 223454 longitude: F1 706472 autolites: 7 https://doi.org/10.51 mix battery=4007 mV	29-11-2019 11 14:08	ad a
	VM.52 goome: 11:13:05 (antude: N41 22006) (sorghoe: £1730500) satellites: 8 (noo: 1.55 (height 11.40 m) goest 0.32 mis (sately: 3006 mV	29-11-2019 11.13:35	
=	WL09 geome: 11:141 [attude: N41223434 [coghude: E1756566] satellites: 6 [hopp: 2.41 [height -34.20 m] speed 0.35 mis [lattley: 38% mV	29-11-2019 11 13:44	Corre
	VA 68 gpme: 10 40 49 [athube: N41.137103 [longitude: 198.734376] subellies: 10 [noisp: 1.30 m [speed: 0.07 ms [smitey; 3000 mV	29-11-2019 15:49:49	
	WL92 goolme: 12-45/24 bitlude: N41 187216 longitude: 1/18 744285 safekiles: 11 hdop: 0.85 height: 2.30 m speed: 0.89 m/s bitley: 3578 m/	29-11-2019 12:46:24	
	WL94 gootne: 12 46 38 lattude: Nit1 1571 65 longitude: 1/8 TA1566 saliotiles: 12 hosp: 0.66 hosp:t: 13 63 m good: 0.35 m is lattud; 4013 mV	29-11-2019 12:46:38	1
	WL05 govine: 12:49:10 adubte: N41.197103 tonglude: 118.74422 safetiles: 12 hoop: 0.77 height: 15:10 m speed: 0.06 m/s tailery. 4013 m/	29-11-2019 12:46:10	_
	WL98 goodme: 12 46 2 Withole: Ni 1 157156 longitude: VM 761356 satulities: 9 May: 1 08 holger 7 50 m spood: 0.28 mN battory: 4608 mV	29-11-2019 12:46:02	
		Lasfel R. OperSheet	Vap contributors

Curation Tools & Exploratory Analysis


- Annotate datasets cooperatively to facilitate data cleansing/curation
- Assist users in creating derived (cleansed) datasets.
- Implement exploratory visualization tools to help the campaign manager to steer operations during the campaign (e.g. identify what and where to focus deployments)

Publishing Data: End of Upstream Cycle

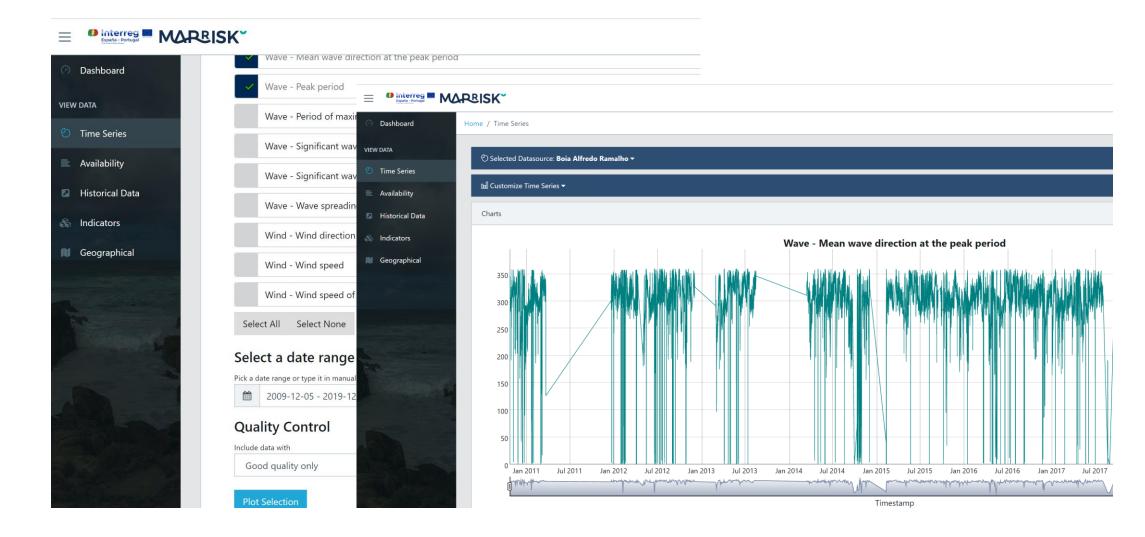
- The WOS has the capability of publishing observation data to a CKAN that feeds a GeoPortal, developed by Deimos.
- Is also capable of publishing data to external O&M/IoT compliant systems such as the Sensor Observation Service, SensorThings API, or even different catalogues such as FIWARE.

MarRISK & Coastal Resilience

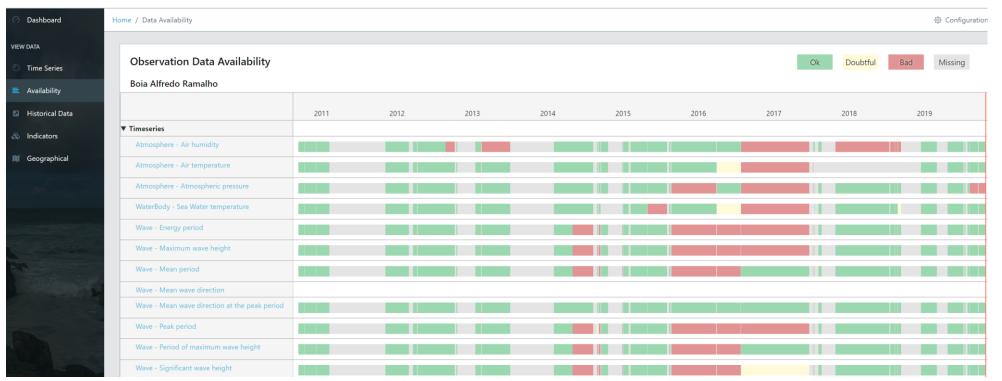
"Costal adaptation to climate change: knowing the risks and increasing resilience."

- Combination of Upstream and Downstream Services
- Uses the same Meta-model to store Marine Observation Data
- Data Curation: Overview of Data Quality
- Processing: Extraction of Indicators
- Processed Data Visualization & Outreach: Risks & Resilience

MARBISK

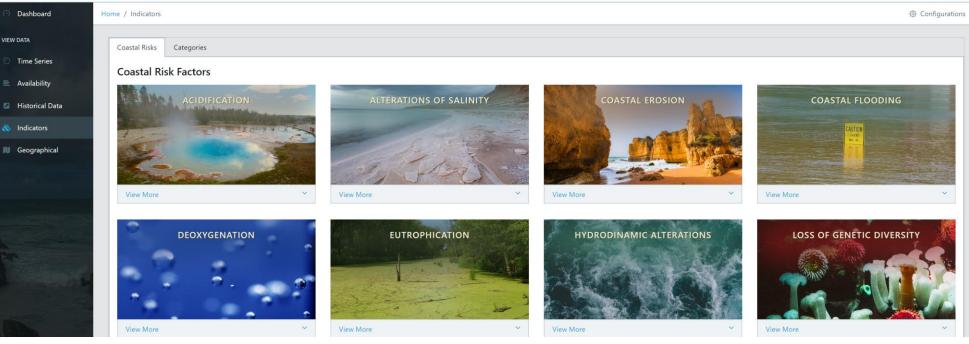

On-going: RADAR ON RAIA (HF RADAR)

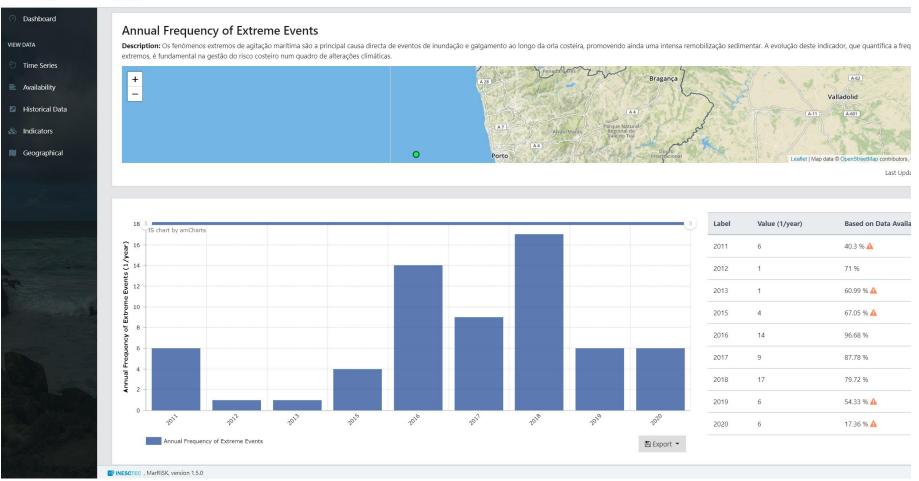
Managing Observation Data

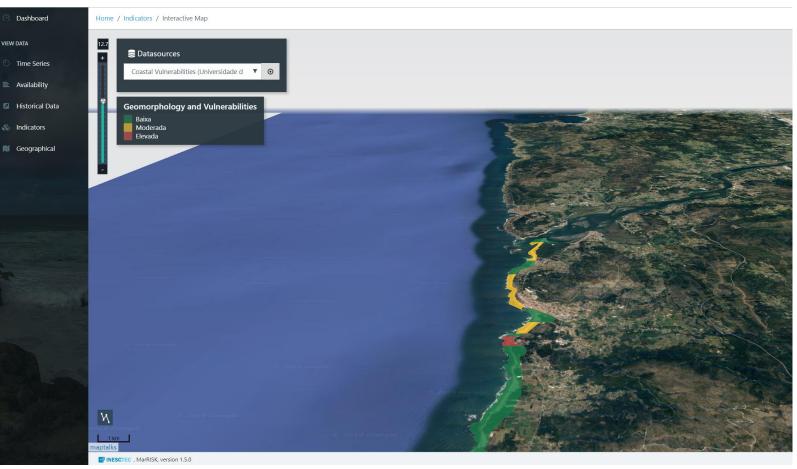

http://marrisk.inesctec.pt

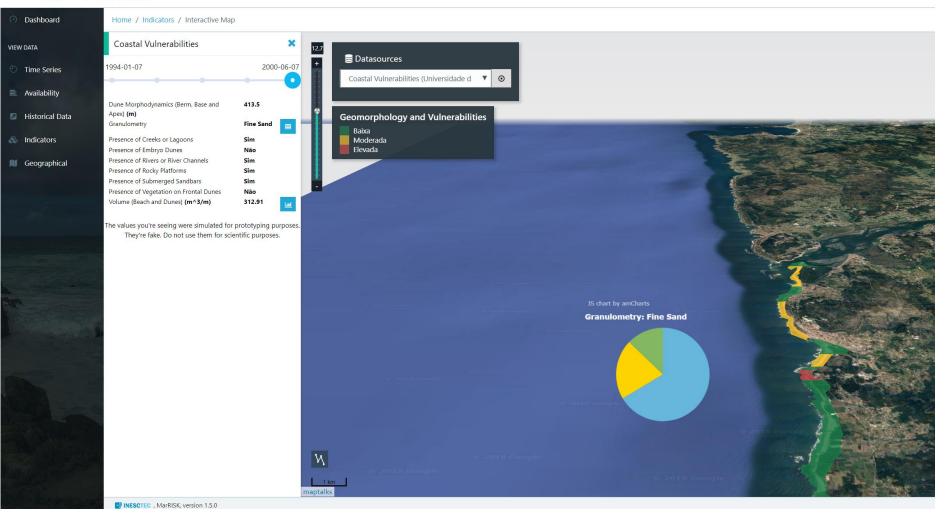
España - Portugal	ARBISK ~			≡
🕜 Dashboard	Home / Time Series			尊 Configurations
VIEW DATA	Select a Sensor Platform			
🕙 Time Series				
Availability	MarRISK OGC SensorThings API			
Historical Data		1995	22255-1-1	
lndicators				
Geographical				
		Surflet Bullion		
	Boia Alfredo Ramalho	Marretas Norte	Marretas Sul	Viana do Castelo Tide Gauge
	Muliparametric buoy	Meteorologic station	Meteorologic station	Continuous tidal levels measurements
	Time Series: 23	Time Series: 8	Time Series: 8	
				Time Series: 1

Searching Observation Data


Data Curation: Quality & Availability


Collection of Indicators


=


Processing: Automatic Extraction of Indicators

Communicating Risks I

Communicating Risks II

Questions?

Artur Rocha: artur.rocha@inesctec.pt INESC TEC Porto, Portugal